Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Surgical Oncology
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Educational Review: Intraoperative Parathyroid Fluorescence Detection Technology in Thyroid and Parathyroid Surgery

Authors: St Amour, Taylor C; Demarchi, Marco Stefano; Thomas, Giju; Triponez, Frédéric; Kiernan, Colleen M; Solόrzano, Carmen C;

Educational Review: Intraoperative Parathyroid Fluorescence Detection Technology in Thyroid and Parathyroid Surgery

Abstract

Accurate parathyroid gland (PG) identification is a critical yet challenging component of cervical endocrine procedures. PGs possess strong near-infrared autofluorescence (NIRAF) compared with other tissues in the neck. This property has been harnessed by image- and probe-based near-infrared fluorescence detection systems, which have gained increasing popularity in clinical use for their ability to accurately aid in PG identification in a rapid, noninvasive, and cost-effective manner. All NIRAF technologies, however, cannot differentiate viable from devascularized PGs without the use of contrast enhancement. Here, we aim to provide an overview of the rapid evolution of these technologies and update the surgery community on the most recent advancements in the field.A PubMed literature review was performed using the key terms "parathyroid," "near-infrared," and "fluorescence." Recommendations regarding the use of these technologies in clinical practice were developed on the basis of the reviewed literature and in conjunction with expert surgeons' opinions.The use of near-infrared fluorescence detection can be broadly categorized as (1) using parathyroid NIRAF to identify both healthy and diseased PGs, and (2) using contrast-enhanced (i.e., indocyanine green) near-infrared fluorescence to evaluate PG perfusion and viability. Each of these approaches possess unique advantages and disadvantages, and clinical trials are ongoing to better define their utility.Near-infrared fluorescence detection offers the opportunity to improve our collective ability to identify and preserve PGs intraoperatively. While additional work is needed to propel this technology further, we hope this review will be valuable to the practicing surgeon.

Keywords

Parathyroidectomy, Neck / surgery, Optical Imaging, Thyroid Gland, Thyroidectomy / methods, Parathyroid Glands, Parathyroid Glands / diagnostic imaging, Optical Imaging / methods, 617, Parathyroidectomy / methods, Thyroidectomy, Humans, Thyroid Gland / surgery, Parathyroid Glands / surgery, Neck

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!