Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three-dimensional imaging of active acid sulfate soil using a DUALEM-21S and EM inversion software

Authors: Zare, E; Beucher, A; Huang, J; Boman, A; Mattbäck, S; Greve, MH; Triantafilis, J;

Three-dimensional imaging of active acid sulfate soil using a DUALEM-21S and EM inversion software

Abstract

One of the major environmental issues in Finland is the presence of large tracts of acid sulfate soil (ASS) landscapes along the coast. Accurately identifying the distribution of ASS sediments, and in particular soil pH, is essential for developing targeted management strategies. One approach is the use of digital soil mapping (DSM) with various ancillary information. Although electromagnetic (EM) induction data has shown potential in mapping ASS, few studies have been conducted to map the spatial distribution of pH at different depths. In this study, a DUALEM-21S was used to collect apparent soil electrical conductivity (ECa) data across a 23-ha field near Vaasa, which lies along the western coast of Finland. A quasi-3D inversion algorithm was used to calculate the estimated true electrical conductivity (σ - mS m-1). A calibration relationship was developed between σ and incubation-pH measured at various depths from topsoil (0-0.2 m), subsurface (0.2-0.4 m) and subsoil (e.g. 0.4-0.6 and 1.8-2 m) using an artificial neural network (ANN) model. The performance of the ANN model was good given the large R2 values for calibration (0.72) and validation (0.65). It was concluded that the combination of ECa data and quasi-3D inversion algorithm (in EM4Soil) was able to map the spatial distribution of incubation-pH associated within an ASS landscape. The approach has the potential to be applied across the coastal areas of Finland and elsewhere to map incubation-pH and identify active-ASS areas and thereby improve the management of these areas.

Keywords

Environmental management, 550, Sulfates, 41 Environmental Sciences, Three-dimensional imaging of soil pH, Imaging, anzsrc-for: 41 Environmental Sciences, Soil, 4106 Soil Sciences, Imaging, Three-Dimensional, Three-Dimensional, Active acid sulfate soil, Quasi 3-d inversion, anzsrc-for: 4106 Soil Sciences, Soil acidity mapping, Finland, Software, Environmental Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green