
arXiv: 2502.10228
handle: 11583/3002838
In this paper we prove an optimal estimate for the norm of wavelet localization operators with Cauchy wavelet and weight functions that satisfy two constraints on different Lebesgue norms. We prove that multiple regimes arise according to the ratio of these norms: if this ratio belongs to a fixed interval (which depends on the Lebesgue exponents) then both constraints are active, while outside this interval one of the constraint is inactive. Furthermore, we characterize optimal weight functions.
Submitted for consideration at Proceedings of SampTA, 2025, Vienna
Mathematics - Functional Analysis, Wavelet localization operators, optimal estimates, FOS: Mathematics, Functional Analysis (math.FA)
Mathematics - Functional Analysis, Wavelet localization operators, optimal estimates, FOS: Mathematics, Functional Analysis (math.FA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
