Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification

Authors: Jinxing Li; Bob Zhang 0001; David Zhang 0001;

Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification

Abstract

Multiview learning reveals the latent correlation among different modalities and utilizes the complementary information to achieve a better performance in many applications. In this paper, we propose a novel multiview learning model based on the Gaussian process latent variable model (GPLVM) to learn a set of nonlinear and nonparametric mapping functions and obtain a shared latent variable in the manifold space. Different from the previous work on the GPLVM, the proposed shared autoencoder Gaussian process (SAGP) latent variable model assumes that there is an additional mapping from the observed data to the shared manifold space. Due to the introduction of the autoencoder framework, both nonlinear projections from and to the observation are considered simultaneously. Additionally, instead of fully connecting used in the conventional autoencoder, the SAGP achieves the mappings utilizing the GP, which remarkably reduces the number of estimated parameters and avoids the phenomenon of overfitting. To make the proposed method adaptive for classification, a discriminative regularization is embedded into the proposed method. In the optimization process, an efficient algorithm based on the alternating direction method and gradient decent techniques is designed to solve the encoder and decoder parts alternatively. Experimental results on three real-world data sets substantiate the effectiveness and superiority of the proposed approach as compared with the state of the art.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!