Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Methods in the Applied Sciences
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical approximation based on deep convolutional neural network for high‐dimensional fully nonlinear merged PDEs and 2BSDEs

Numerical approximation based on deep convolutional neural network for high-dimensional fully nonlinear merged PDEs and 2BSDEs
Authors: Xu Xiao; Wenlin Qiu; Omid Nikan;

Numerical approximation based on deep convolutional neural network for high‐dimensional fully nonlinear merged PDEs and 2BSDEs

Abstract

This paper proposes two efficient approximation methods to solve high‐dimensional fully nonlinear partial differential equations (NPDEs) and second‐order backward stochastic differential equations (2BSDEs), where such high‐dimensional fully NPDEs are extremely difficult to solve because the computational cost of standard approximation methods grows exponentially with the number of dimensions. Therefore, we consider the following methods to overcome this difficulty. For the merged fully NPDEs and 2BSDEs system, combined with the time forward discretization and ReLU function, we use multiscale deep learning fusion and convolutional neural network (CNN) techniques to obtain two numerical approximation schemes, respectively. Finally, three practical high‐dimensional test problems involving Allen–Cahn, Black–Scholes–Barenblatt, and Hamilton–Jacobi–Bellman equations are given so that the first proposed method exhibits higher efficiency and accuracy than the existing method, while the second proposed method can extend the dimensionality of the completely NPDEs–2BSDEs system over 400 dimensions, from which the numerical results highlight the effectiveness of proposed methods.

Related Organizations
Keywords

65M22, 60H15, 65C30, 68T07, high-dimensional problems, convolutional neural network, Numerical Analysis (math.NA), Neural networks for/in biological studies, artificial life and related topics, Allen-Cahn equation, Finite difference methods for initial value and initial-boundary value problems involving PDEs, Black-Scholes-Barenblatt equation, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs, numerical experiments, Hamilton-Jacobi-Bellman equation, Artificial neural networks and deep learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green