Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biometrical Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biometrical Journal
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway–Maxwell–Poisson distribution

Analyzing longitudinal clustered count data with zero inflation: marginal modeling using the Conway-Maxwell-Poisson distribution
Authors: Kang, Tong; Levy, Steven M.; Datta, Somnath;

Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway–Maxwell–Poisson distribution

Abstract

AbstractBiological and medical researchers often collect count data in clusters at multiple time points. The data can exhibit excessive zeros and a wide range of dispersion levels. In particular, our research was motivated by a dental dataset with such complex data features: the Iowa Fluoride Study (IFS). The study was designed to investigate the effects of various dietary and nondietary factors on the caries development of a cohort of Iowa school children at the ages of 5, 9, and 13. To analyze the multiyear IFS data, we propose a novel longitudinal method of a generalized estimating equations based marginal regression model. We use a zero‐inflated model with a Conway–Maxwell–Poisson (CMP) distribution, which has the flexibility to account for all levels of dispersion. The parameters of interest are estimated through a modified expectation–solution algorithm to account for the clustered and temporal correlation structure. We fit the proposed zero‐inflated CMP model and perform a comprehensive secondary analysis of the IFS dataset. It resulted in a number of notable conclusions that also make clinical sense. Additionally, we demonstrated the superiority of this modeling approach over two other popular competing models: the zero‐inflated Poisson and negative binomial models. In the simulation studies, we further evaluate the performance of our point estimators, the variance estimators, and that of the large sample confidence intervals for the parameters of interest. It is also demonstrated that our longitudinal CMP model can correctly identify the time‐varying dispersion patterns.

Related Organizations
Keywords

Conway-Maxwell-Poisson distribution, longitudinal data, Models, Statistical, zero inflation, count data, Iowa, Applications of statistics to biology and medical sciences; meta analysis, Fluorides, Humans, clustered data, Computer Simulation, Poisson Distribution, Child

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!