
doi: 10.1155/2020/6280372
This paper is concerned with a high-order numerical scheme for nonlinear systems of second-order boundary value problems (BVPs). First, by utilizing quasi-Newton’s method (QNM), the nonlinear system can be transformed into linear ones. Based on the standard Lobatto orthogonal polynomials, we introduce a high-order Lobatto reproducing kernel method (LRKM) to solve these linear equations. Numerical experiments are performed to investigate the reliability and efficiency of the presented method.
Numerical solution of boundary value problems involving ordinary differential equations, Nonlinear boundary value problems for ordinary differential equations
Numerical solution of boundary value problems involving ordinary differential equations, Nonlinear boundary value problems for ordinary differential equations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
