Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

L-Stability of Nonlinear Systems Represented by State Models

Authors: Yeletskikh, I.A.; Yeletskikh, K.S.; Shcherbatykh, V.E.;

L-Stability of Nonlinear Systems Represented by State Models

Abstract

I.A. Yeletskikh1, K.S. Yeletskikh1, V.E. Shcherbatykh1 1Bunin Yelets State University, Yelets, Russian Federation, E-mails: yeletskikh.irina@yandex.ru, kostan.yeletsky@gmail.com, wega18@mail.ru. Ирина Адольфовна Елецких, кандидат физико-математических наук, доцент, кафедра ≪Математика и методика ее преподавания≫, Елецкий государственный университет им. И.А. Бунина (г. Елец, Российская Федерация), yeletskikh.irina@yandex.ru. Константин Сергеевич Елецких, кандидат физико-математических наук, старший преподаватель, кафедра ≪Математика и методика ее преподавания≫, Елецкий государственный университет им. И.А. Бунина (г. Елец, Российская Федерация), kostan.yeletsky@gmail.com. Владимир Егорович Щербатых, кандидат физико-математических наук, доцент, кафедра ≪Математика и методика ее преподавания≫, Елецкий государственный университет им. И.А. Бунина (г. Елец, Российская Федерация), wega18@mail.ru. Stability theory plays a key role in systems theory and engineering. The stability of equilibrium points is usually considered within the framework of the stability theory developed by the Russian mathematician and mechanic A.M. Lyapunov (1857–1918), who laid its foundations and gave it its name. Nowadays, the point of view on stability has become very widespread, as stability in relation to disturbance of the input signal. The research is based on the space-state approach for modelling nonlinear dynamic systems andan alternative “input-output” approach. The input-output model is implemented without explicit knowledge of the internal structure determined by the equation of state. The system is considered as a “black box”, which is accessed only through the input and output terminals ports. The concept of stability in terms of “input-output” is based on the definition of L-stability of a nonlinear system, the method of Lyapunov functions and its generalization to the case of nonlinear dynamical systems. The interpretation of the problem on accumulation of perturbations is reduced to the problem on finding the norm of an operator, which makes it possible to expand the range of models under study, depending on the space in which the input and output signals act. Теория устойчивости играет ключевую роль в теории систем и инженерных науках. Устойчивость точек равновесия обычно рассматривается в рамках теории устойчивости, разработанной русским математиком и механиком А.М. Ляпуновым (1857–1918), заложившим ее основы и давшим ей имя. В настоящее время стала очень распространенной точка зрения на устойчивость, как устойчивость по отношению к возмущению входного сигнала. В основу исследования положен подход пространства-состояния для моделирования нелинейных динамических систем и альтернативный подход ≪вход-выход≫. Модель ≪вход-выход≫ реализуется без явного знания внутренней структуры, определяемой уравнением состояния. Система рассматривается как ≪черный ящик≫, доступ к которому осуществляется только через входные и выходные терминалы порты. В основу концепции устойчивости в терминах ≪вход-выход≫ положено определение L-устойчивости нелинейной системы, метод функций Ляпунова и его обобщение на случай нелинейных динамических систем. Трактовка задачи о накоплении возмущений сводится к задаче отыскания нормы оператора, что позволяет расширить круг исследуемых моделей в зависимости от пространства, в котором действуют входные и выходные сигналы.

Keywords

causality, L-stability, exponential stability, L-устойчивость, УДК 517.925, казуальность, dynamical system, gain factor, динамическая система, коэффициент усиления, экспоненциальная устойчивость

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold