Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Copenhagen Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2021 . Peer-reviewed
Data sources: Research.fi
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dianthracenylazatrioxa[8]circulene: Synthesis, Characterization and Application in OLEDs

Authors: Pavlo Stakhira; Stephan K. Pedersen; Boris F. Minaev; Michael Pittelkow; Nataliya N. Karaush-Karmazin; Hans Ågren; Hans Ågren; +8 Authors

Dianthracenylazatrioxa[8]circulene: Synthesis, Characterization and Application in OLEDs

Abstract

AbstractA soluble, green‐blue fluorescent, π‐extended azatrioxa[8]circulene was synthesized by oxidative condensation of a 3,6‐dihydroxycarbazole and 1,4‐anthraquinone by using benzofuran scaffolding. This is the first circulene to incorporate anthracene within its carbon framework. Solvent‐dependent fluorescence and bright green electroluminescence accompanied by excimer emission are the key optical properties of this material. The presence of sliding π‐stacked columns in the single crystal of dianthracenylazatrioxa[8]circulene is found to cause a very high electron‐hopping rate, thus making this material a promising n‐type organic semiconductor with an electron mobility predicted to be around 2.26 cm2 V−1 s−1. The best organic light‐emitting diode (OLED) device based on the dianthracenylazatrioxa[8]circulene fluorescent emitter has a brightness of around 16 000 Cd m−2 and an external quantum efficiency of 3.3 %. Quantum dot‐based OLEDs were fabricated by using dianthracenylazatrioxa[8]circulene as a host matrix material.

Keywords

synthesis, MOLECULAR DESIGN, CYCLOOCTATETRATHIOPHENE, polycyclic aromatic hydrocarbons, anthracene, LIGHT-EMITTING-DIODES, PAH, циркулены, PERFORMANCE, PLANAR, organic light-emitting diodes, Efficiency, Organizational, ELECTRONIC-STRUCTURE CALCULATIONS, OLED, Chemical sciences, оптические свойства, ANTHRACENE-DERIVATIVES, circulene, органические светодиоды, EXCIMER FORMATION, AROMATICITY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green