Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radio Electronics, C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article
License: CC BY SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A MULTIPLE NON-LINEAR REGRESSION MODEL TO ESTIMATE THE AGILE TESTING EFFORTS FOR SMALL WEB PROJECTS

Authors: Prykhodko, N. V.; Prykhodko, S. B.;

A MULTIPLE NON-LINEAR REGRESSION MODEL TO ESTIMATE THE AGILE TESTING EFFORTS FOR SMALL WEB PROJECTS

Abstract

Context. Software testing effort estimation is one of the important problems in software development and software testing life cycle. The object of the study is the process of estimating the agile testing efforts for small Web projects. The subject of the study is the multiple regression models for estimating the agile testing efforts for small Web projects. Objective. The goal of the work is the creation of the multiple non-linear regression model for estimating the agile testing efforts for small Web projects on the basis of the Johnson multivariate normalizing transformation. Method. The model, confidence and prediction intervals of multiple non-linear regression for estimating the agile testing efforts for small Web projects are constructed on the basis of the Johnson multivariate normalizing transformation for non-Gaussian data with the help of appropriate techniques. The techniques based on the multiple non-linear regression analysis using the multivariate normalizing transformations to build the models, equations, confidence and prediction intervals of multiple non-linear regressions are used. The techniques allow to take into account the correlation between random variables in the case of normalization of multivariate non-Gaussian data. In general, this leads to a reduction of the mean magnitude of relative error, the widths of the confidence and prediction intervals in comparison with the linear models and nonlinear models constructed using univariate normalizing transformations. Results. Comparison of the constructed model with the linear model and non-linear regression models based on the decimal logarithm and the Johnson univariate transformation has been performed. Conclusions. The multiple non-linear regression model to estimate the agile testing efforts for small Web projects is firstly constructed on the basis of the Johnson multivariate transformation for SB family. This model, in comparison with other regression models (both linear and non-linear), has a smaller value of the mean magnitude of relative error, smaller widths of the confidence and prediction intervals. The prospects for further research may include the application of other multivariate normalizing transformations and data sets to construct the multiple non-linear regression model for estimating the agile testing efforts for small Web projects.

Keywords

agile тестування, оцінювання, трудомісткість тестування, Веб проект, модель множинної нелінійної регресії, багатовимірне нормалізуюче перетворення, негаусівські дані., agile testing, estimation, testing effort, Web project, multiple non-linear regression model, multivariate normalizing transformation, non-Gaussian data., agile тестирование, оценка, трудоемкость тестирования, Веб проект, модель множественной нелинейной регрессии, многомерное нормализующее преобразования, негаусивськи данные.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold