Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Random Structures an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Random Structures and Algorithms
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2008
Data sources: zbMATH Open
https://doi.org/10.1145/107381...
Article . 2005 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2004
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Routing complexity of faulty networks

Authors: Angel, Omer; Benjamini, Itai; Ofek, Eran; Wieder, Udi;

Routing complexity of faulty networks

Abstract

AbstractOne of the fundamental problems in distributed computing is how to efficiently perform routing in a faulty network in which each link fails with some probability. This article investigates how big the failure probability can be, before the capability to efficiently find a path in the network is lost. Our main results show tight upper and lower bounds for the failure probability, which permits routing both for the hypercube and for thed‐dimensional mesh. We use tools from percolation theory to show that in thed‐dimensional mesh, once a giant component appears—efficient routing is possible. A different behavior is observed when the hypercube is considered. In the hypercube there is a range of failure probabilities in which short paths exist with high probability, yet finding them must involve querying essentially the entire network. Thus the routing complexity of the hypercube shows an asymptotic phase transition. The critical probability with respect to routing complexity lies in a different location than that of the critical probability with respect to connectivity. Finally we show that an oracle access to links (as opposed to local routing) may reduce significantly the complexity of the routing problem. We demonstrate this fact by providing tight upper and lower bounds for the complexity of routing in the random graphGn,p. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008

Keywords

Network design and communication in computer systems, Probability (math.PR), Reliability, testing and fault tolerance of networks and computer systems, hypercube, percolation, phase transition, Graph theory (including graph drawing) in computer science, Communication networks in operations research, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), lower bound, Mathematics - Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Green
bronze
Related to Research communities