
doi: 10.1137/0916028
Summary: Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. A new domain mapping algorithm is presented that extends recent work in which ideas from spectral graph theory have been applied to this problem. The generalization of spectral graph bisection involves a novel use of multiple eigenvectors to allow for division of a computation into four or eight parts at each stage of a recursive decomposition. The resulting method is suitable for scientific computations like irregular finite elements or differences performed on hypercube or mesh architecture machines. Experimental results confirm that the new method provides better decompositions arrived at more economically and robustly than with previous spectral methods. This algorithm allows for arbitrary nonnegative weights on both vertices and edges to model inhomogeneous computation and communication. A new spectral lower bound for graph bisection is also presented.
Graphs and linear algebra (matrices, eigenvalues, etc.), Graph theory (including graph drawing) in computer science, load balancing, distributed memory parallel computer, Parallel numerical computation
Graphs and linear algebra (matrices, eigenvalues, etc.), Graph theory (including graph drawing) in computer science, load balancing, distributed memory parallel computer, Parallel numerical computation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 377 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
