Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups

Authors: Hirmer, Pascal; Behringer, Michael;

FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups

Abstract

In recent years, the amount of data highly increases through cheap hardware, fast network technology, and the increasing digitization within most domains. The data produced is oftentimes heterogeneous, dynamic and originates from many highly distributed data sources. Deriving information and, as a consequence, knowledge from this data can lead to a higher effectiveness for problem solving and thus higher profits for companies. However, this is a great challenge – oftentimes referred to as Big Data problem. The data mashup tool FlexMash, developed at the University of Stuttgart, tackles this challenge by offering a means for integration and processing of heterogeneous, dynamic data sources. By doing so, FlexMash focuses on (i) an easy means to model data integration and processing scenarios by domain-experts based on the Pipes and Filters pattern, (ii) a flexible execution based on the user’s non-functional requirements, and (iii) high extensibility to enable a generic approach. A first version of this tool was presented during the ICWE Rapid Mashup Challenge 2015. In this article, we present the new version FlexMash 2.0, which introduces new features such as cloud-based execution and human interaction during runtime. These concepts have been presented during the ICWE Rapid Mashup Challenge 2016.

Country
Germany
Related Organizations
Keywords

Database Applications (CR H.2.8), FlexMash, Pipes and Filters, Data Structures (CR E.1), Data processing and integration, ICWE Rapid Mashup Challenge 2016, Information Storage and Retrieval General (CR H.3.0), 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!