Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Space Weatherarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Space Weather
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Space Weather
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Space Weather
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Short‐Time Prediction of the Energetic Electron Flux in the Planetary Radiation Belt Based on Stacking Ensemble‐Learning Algorithm

Authors: Rongxin Tang; Yuhao Tao; Jiahao Li; Zhou Chen; Xiaohua Deng; Haimeng Li;

The Short‐Time Prediction of the Energetic Electron Flux in the Planetary Radiation Belt Based on Stacking Ensemble‐Learning Algorithm

Abstract

AbstractHigh energy electrons in planetary radiation belts are a major threat to satellites and communications in deep space applications. In order to predict the variations of energetic electron fluxes for different energy channels, we proposed a new ensemble machine leaning model for differential electron flux from 30 keV to 4 MeV in the Earth's radiation belts based on the RBSP‐A observation data from March 2013 to December 2017. The deep neural network (DNN), the convolutional neural network (CNN), the combination of CNN and DNN (CNN&DNN), the linear regression (LR), and the light gradient boosting machine (LightGBM) are among the machine learning models chosen. We carefully compared the electron flux predictions for 20 energy levels and all five models can present valid short‐time flux forecasts. The DNN model has the poorest result. The LR model is good for short‐term forecasting but not so good for long‐term forecasting. The LightGBM ensemble model is highly stable, and it has always outperformed other independent models in terms of forecast accuracy. Then the comparison by adding AE and SYM‐H indexes is given and the influence of geomagnetic activity conditions can be negligible for this short‐time prediction. Furthermore, we applied these five models on Saturn and finally got very similar prediction results. Our results will be significantly useful in instrument designs and system control of future scientific satellites in deep space explorations.

Related Organizations
Keywords

QB460-466, Meteorology. Climatology, QC851-999, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold