
We present a novel approach for the fabrication of terahertz (THz) metamaterial structures utilizing PolyMUMPs, a foundry process commonly used in the fabrication of microelectricalmechanical systems (MEMS) devices. The structure has an alternating composition consisting of three polysilicon layers and two silicon dioxide layers each with a unique thickness. A split ring resonator (SRR) structure was fabricated with dimensions to support resonance around 5 THz. The structures were arrayed to cover a 1 cm2 area. The backside of the samples was polished to improve the transmission characteristics of the material during Fourier transform spectroscopy measurements. The data indicates a transmission null around 3.7 THz due to the periodic arrangement of the SRR structures. These results are encouraging for future use of PolyMUMPs in terahertz metamaterial designs which is ideal for the repeatability the manufacturing process lends to the design.
terahertz, Engineering, negative refractive index, fabrication, Computer Engineering, Electrical and Computer Engineering, metamaterial, 620
terahertz, Engineering, negative refractive index, fabrication, Computer Engineering, Electrical and Computer Engineering, metamaterial, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
