Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Graphics Fo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Graphics Forum
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Warehouse Vis: A Visual Analytics Approach to Facilitating Warehouse Location Selection for Business Districts

Authors: Q. Li; Q. Q. Liu; C. F. Tang; Z. W. Li; S. C. Wei; X. R. Peng; M. H. Zheng; +2 Authors

Warehouse Vis: A Visual Analytics Approach to Facilitating Warehouse Location Selection for Business Districts

Abstract

AbstractSelecting a proper warehouse location serving to satisfy the demands of the goods from a certain business area is important to a successful retail business. However, the large solution space, uncertain traffic conditions, and varying business preferences impose great challenges on warehouse location selection. Conventional approaches mainly summarize relevant evaluation criteria and compile them into an analysis report to facilitate rapid data absorption but fail to support a comprehensive and joint decision‐making process in warehouse location selection. In this paper, we propose a visual analytics approach to facilitating warehouse location selection. We first visually centralize relevant information of warehouses and adapts a widely‐used methodology to efficiently rank warehouse candidates. We then design a delivering estimation model based on massive logistics trajectories to resolve the uncertainty issue of traffic conditions of warehouses. Based on these techniques, an interactive framework is proposed to generate and explore the candidate warehouses. We conduct a case study and a within‐subject study with baseline systems to assess the efficacy of our system. Experts ‘feedback also suggests that our approach indeed helps them better tackle the problem of finding an ideal warehouse in the field of retail logistics management.

Related Organizations
Keywords

CCS Concepts, Visualization design and evaluation methods, • Human-centered computing → Visualization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!