
handle: 10316/109518
A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems as MPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed. The most important nonlinear programming methods, complementarity algorithms, enumerative techniques and 0 - 1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey.
linear complementarity problems, global optimization, nonlinear programming, integer programming
linear complementarity problems, global optimization, nonlinear programming, integer programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
