Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Article . 2024
Data sources: HAL-Rennes 1
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low Complexity Learning-Based QTMTT Partitioning Scheme for Inter Coding in VVC Encoder

Authors: Taabane, Ibrahim; Menard, Daniel; Mansouri, Anass; Sahraoui, Sélima; Ahaitouf, Ali;

Low Complexity Learning-Based QTMTT Partitioning Scheme for Inter Coding in VVC Encoder

Abstract

The Versatile Video Coding (VVC) standard, finalized in 2020 by the Joint Video Experts Team (JVET) and the Video Coding Experts Group (VCEG), marks a major advancement in video compression technology, offering a 50% efficiency improvement over its predecessor, the High-Efficiency Video Coding (HEVC) standard. A key innovation in the VVC standard is the Quad Tree with nested Multi-Type Tree (QTMTT) structure, essential for the partitioning process. However, this enhancement has led to increased coding complexity, posing challenges for real-time applications. To address this, our paper focuses on optimizing the partitioning process in the VVC encoder under the Random Access (RA) configuration. We propose a novel approach that leverages inter-prediction by integrating both coding and motion information across inter-frames to enhance coding efficiency. This solution is implemented on the Fraunhofer Versatile Video Encoder (VVenC). It utilizes a set of lightweight Light Gradient Boosting Machine (LightGBM) binary classifiers to accurately predict the optimal split mode for each Coding Unit (CU). Consequently, our approach significantly accelerates the VVenC encoding process. Experimental results show that our method reduces the runtime of the slower preset by 43.21%, with only a slight bitrate increase of 2.9%. These improvements not only significantly reduce computational complexity but also outperform several existing state-of-the-art methods.

Country
France
Keywords

Standards, Vegetation, Complexity theory, versatile video coding (VVC), Bit rate, LightGBM, 004, Costs, compression efficiency, TK1-9971, [SPI]Engineering Sciences [physics], machine learning, Streaming media, Runtime, Complexity reduction, High efficiency video coding, Encoding, inter prediction, Electrical engineering. Electronics. Nuclear engineering, Real-time systems, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold