
Die Autoren untersuchen Eigenschaften \(q\)-stufiger Runge-Kutta-Verfahren der Ordnung \(p\) (\(p \geq q + 1\)) zur Zeit-Diskretisierung linearer parabolischer Anfangs-Randwertprobleme: Bei experimentellen Untersuchungen des Verfahrensfehlers zeigt sich bei unglatten Randbedingungen bzw. Rändern ein Ordnungsverlust in den Randgebieten, während in Bereichen des Innengebietes die volle Konvergenzordnung \(p\) erhalten bleibt. Mit dem Beweis des Theorem 3, dem Hauptresultat dieser Arbeit, werden die o.e. experimentellen Beobachtungen auf eine saubere mathematische Grundlage gestellt. Die Beweismethode läßt sich auch auf entsprechende Aussagen für BDF-Verfahren übertragen.
Method of lines for initial value and initial-boundary value problems involving PDEs, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Runge-Kutta methods, convergence, method of times, order reduction, Initial value problems for second-order parabolic equations, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, time discretizations
Method of lines for initial value and initial-boundary value problems involving PDEs, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Runge-Kutta methods, convergence, method of times, order reduction, Initial value problems for second-order parabolic equations, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, time discretizations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
