Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
Forum Mathematicum
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topological group actions by group automorphisms and Banach representations

Authors: Megrelishvili, Michael;

Topological group actions by group automorphisms and Banach representations

Abstract

Abstract We study Banach representability for actions of topological groups on groups by automorphisms (in particular, an action of a group on itself by conjugations). Every such action is Banach representable on some Banach space. The natural question is to examine when we can find representations on low complexity Banach spaces. In contrast to the standard left action of a locally compact second countable group G on itself, the conjugation action need not be reflexively representable even for SL 2 ⁡ ( ℝ ) {\operatorname{SL}_{2}(\mathbb{R})} . The conjugation action of SL n ⁡ ( ℝ ) {\operatorname{SL}_{n}(\mathbb{R})} is not Asplund representable for every n ≥ 4 {n\geq 4} . The linear action of GL n ⁡ ( ℝ ) {\operatorname{GL}_{n}(\mathbb{R})} on ℝ n {{\mathbb{R}}^{n}} , for every n ≥ 2 {n\geq 2} , is not representable on Asplund Banach spaces. On the other hand, this action is representable on a Rosenthal Banach space (not containing an isomorphic copy of l 1 {l_{1}} ). The conjugation action of a locally compact group need not be Rosenthal representable (even for Lie groups). As a byproduct, we obtain some counterexamples about Banach representations of homogeneous G-actions G / H {G/H} .

Related Organizations
Keywords

Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\), General Topology (math.GN), representation on Banach spaces, 37Bxx, 22Dxx, 54H15, 46Bxx, Dynamical Systems (math.DS), Other representations of locally compact groups, Transformation groups and semigroups (topological aspects), Functional Analysis (math.FA), Mathematics - Functional Analysis, FOS: Mathematics, Representations of groups as automorphism groups of algebraic systems, Isometric theory of Banach spaces, equivariant compactification, Mathematics - Dynamical Systems, Mathematics - General Topology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green