Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Numerical Mathematics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.60692/0e...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/42...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A tensor formalism for multilayer network centrality measures using the Einstein product

شكلي موتر لمقاييس مركزية الشبكة متعددة الطبقات باستخدام منتج أينشتاين
Authors: Smahane El-Halouy; Silvia Noschese; Lothar Reichel;

A tensor formalism for multilayer network centrality measures using the Einstein product

Abstract

Les systèmes complexes composés de divers types d'entités qui interagissent de différentes manières peuvent être modélisés par des réseaux multicouches. Cet article utilise le formalisme tensoriel avec le produit Einstein pour modéliser ce type de réseaux. Plusieurs mesures de centralité, bien connues pour les réseaux monocouches, sont étendues à des réseaux multicouches utilisant des tenseurs et leurs propriétés sont étudiées. En particulier, la centralité du sous-graphe basée sur l'exponentielle et le résolvant d'un tenseur sont considérés. Des méthodes de sous-espace de Krylov basées sur le format tenseur sont introduites pour calculer des approximations de différentes mesures pour de grands réseaux multicouches.

Los sistemas complejos que consisten en diversos tipos de entidades que interactúan de diferentes maneras pueden ser modelados por redes multicapa. Este artículo utiliza el formalismo tensorial con el producto de Einstein para modelar este tipo de redes. Varias medidas de centralidad, que son bien conocidas para redes de una sola capa, se extienden a redes multicapa que utilizan tensores y se investigan sus propiedades. En particular, se considera la centralidad del subgrafo basada en el exponencial y el resolvente de un tensor. Se introducen métodos de subespacio de Krylov basados en el formato de tensor para calcular aproximaciones de diferentes medidas para grandes redes multicapa.

Complex systems that consist of diverse kinds of entities that interact in different ways can be modeled by multilayer networks. This paper uses the tensor formalism with the Einstein product to model this type of networks. Several centrality measures, that are well known for single-layer networks, are extended to multilayer networks using tensors and their properties are investigated. In particular, subgraph centrality based on the exponential and resolvent of a tensor are considered. Krylov subspace methods based on the tensor format are introduced for computing approximations of different measures for large multilayer networks.

يمكن نمذجة الأنظمة المعقدة التي تتكون من أنواع مختلفة من الكيانات التي تتفاعل بطرق مختلفة من خلال شبكات متعددة الطبقات. تستخدم هذه الورقة شكلية الموتر مع منتج أينشتاين لنمذجة هذا النوع من الشبكات. تمتد العديد من مقاييس المركزية، المعروفة جيدًا بالشبكات أحادية الطبقة، إلى الشبكات متعددة الطبقات باستخدام الموتر ويتم التحقيق في خصائصها. على وجه الخصوص، يتم النظر في مركزية الرسم البياني الفرعي بناءً على الموتر الأسي والمحلل. يتم إدخال طرق الفضاء الفرعي Krylov بناءً على تنسيق الموتر لحساب التقريبات للقياسات المختلفة للشبكات الكبيرة متعددة الطبقات.

Keywords

Numerical computation of eigenvalues and eigenvectors of matrices, Tensor Decompositions and Applications in Multilinear Algebra, Eigenvalues, singular values, and eigenvectors, Higher-Order Tensors, Tensor (intrinsic definition), Formalism (music), multilayer networks, Mathematical analysis, tensor functions, Visual arts, Krylov subspace method, Quantum Many-Body Systems and Entanglement Dynamics, FOS: Mathematics, Centrality Measures, Centrality, Mathematics - Numerical Analysis, Tensor Networks, Tensor contraction, Resolvent, Graphs and linear algebra (matrices, eigenvalues, etc.), centrality measures, Pure mathematics, Statistical and Nonlinear Physics, Numerical Analysis (math.NA), Atomic and Molecular Physics, and Optics, Computational Mathematics, Tensor product, Subspace topology, adjacency tensor, Physics and Astronomy, Combinatorics, Graph theory (including graph drawing) in computer science, Einstein product, Mathematical physics, Physical Sciences, Tensor Decomposition, Statistical Mechanics of Complex Networks, Nonnegative Tensor Factorization, Einstein, Musical, 05C50, 15A18, 65F15, Tensor product of Hilbert spaces, Adjacency tensor; centrality measures; Einstein product; Krylov subspace method; multilayer networks; tensor functions, Mathematics, Art

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid