
doi: 10.1016/j.apnum.2023.06.013 , 10.60692/0e2jh-2hz82 , 10.60692/42dan-9hj54 , 10.48550/arxiv.2210.09355
arXiv: 2210.09355
handle: 11573/1686046
doi: 10.1016/j.apnum.2023.06.013 , 10.60692/0e2jh-2hz82 , 10.60692/42dan-9hj54 , 10.48550/arxiv.2210.09355
arXiv: 2210.09355
handle: 11573/1686046
Les systèmes complexes composés de divers types d'entités qui interagissent de différentes manières peuvent être modélisés par des réseaux multicouches. Cet article utilise le formalisme tensoriel avec le produit Einstein pour modéliser ce type de réseaux. Plusieurs mesures de centralité, bien connues pour les réseaux monocouches, sont étendues à des réseaux multicouches utilisant des tenseurs et leurs propriétés sont étudiées. En particulier, la centralité du sous-graphe basée sur l'exponentielle et le résolvant d'un tenseur sont considérés. Des méthodes de sous-espace de Krylov basées sur le format tenseur sont introduites pour calculer des approximations de différentes mesures pour de grands réseaux multicouches.
Los sistemas complejos que consisten en diversos tipos de entidades que interactúan de diferentes maneras pueden ser modelados por redes multicapa. Este artículo utiliza el formalismo tensorial con el producto de Einstein para modelar este tipo de redes. Varias medidas de centralidad, que son bien conocidas para redes de una sola capa, se extienden a redes multicapa que utilizan tensores y se investigan sus propiedades. En particular, se considera la centralidad del subgrafo basada en el exponencial y el resolvente de un tensor. Se introducen métodos de subespacio de Krylov basados en el formato de tensor para calcular aproximaciones de diferentes medidas para grandes redes multicapa.
Complex systems that consist of diverse kinds of entities that interact in different ways can be modeled by multilayer networks. This paper uses the tensor formalism with the Einstein product to model this type of networks. Several centrality measures, that are well known for single-layer networks, are extended to multilayer networks using tensors and their properties are investigated. In particular, subgraph centrality based on the exponential and resolvent of a tensor are considered. Krylov subspace methods based on the tensor format are introduced for computing approximations of different measures for large multilayer networks.
يمكن نمذجة الأنظمة المعقدة التي تتكون من أنواع مختلفة من الكيانات التي تتفاعل بطرق مختلفة من خلال شبكات متعددة الطبقات. تستخدم هذه الورقة شكلية الموتر مع منتج أينشتاين لنمذجة هذا النوع من الشبكات. تمتد العديد من مقاييس المركزية، المعروفة جيدًا بالشبكات أحادية الطبقة، إلى الشبكات متعددة الطبقات باستخدام الموتر ويتم التحقيق في خصائصها. على وجه الخصوص، يتم النظر في مركزية الرسم البياني الفرعي بناءً على الموتر الأسي والمحلل. يتم إدخال طرق الفضاء الفرعي Krylov بناءً على تنسيق الموتر لحساب التقريبات للقياسات المختلفة للشبكات الكبيرة متعددة الطبقات.
Numerical computation of eigenvalues and eigenvectors of matrices, Tensor Decompositions and Applications in Multilinear Algebra, Eigenvalues, singular values, and eigenvectors, Higher-Order Tensors, Tensor (intrinsic definition), Formalism (music), multilayer networks, Mathematical analysis, tensor functions, Visual arts, Krylov subspace method, Quantum Many-Body Systems and Entanglement Dynamics, FOS: Mathematics, Centrality Measures, Centrality, Mathematics - Numerical Analysis, Tensor Networks, Tensor contraction, Resolvent, Graphs and linear algebra (matrices, eigenvalues, etc.), centrality measures, Pure mathematics, Statistical and Nonlinear Physics, Numerical Analysis (math.NA), Atomic and Molecular Physics, and Optics, Computational Mathematics, Tensor product, Subspace topology, adjacency tensor, Physics and Astronomy, Combinatorics, Graph theory (including graph drawing) in computer science, Einstein product, Mathematical physics, Physical Sciences, Tensor Decomposition, Statistical Mechanics of Complex Networks, Nonnegative Tensor Factorization, Einstein, Musical, 05C50, 15A18, 65F15, Tensor product of Hilbert spaces, Adjacency tensor; centrality measures; Einstein product; Krylov subspace method; multilayer networks; tensor functions, Mathematics, Art
Numerical computation of eigenvalues and eigenvectors of matrices, Tensor Decompositions and Applications in Multilinear Algebra, Eigenvalues, singular values, and eigenvectors, Higher-Order Tensors, Tensor (intrinsic definition), Formalism (music), multilayer networks, Mathematical analysis, tensor functions, Visual arts, Krylov subspace method, Quantum Many-Body Systems and Entanglement Dynamics, FOS: Mathematics, Centrality Measures, Centrality, Mathematics - Numerical Analysis, Tensor Networks, Tensor contraction, Resolvent, Graphs and linear algebra (matrices, eigenvalues, etc.), centrality measures, Pure mathematics, Statistical and Nonlinear Physics, Numerical Analysis (math.NA), Atomic and Molecular Physics, and Optics, Computational Mathematics, Tensor product, Subspace topology, adjacency tensor, Physics and Astronomy, Combinatorics, Graph theory (including graph drawing) in computer science, Einstein product, Mathematical physics, Physical Sciences, Tensor Decomposition, Statistical Mechanics of Complex Networks, Nonnegative Tensor Factorization, Einstein, Musical, 05C50, 15A18, 65F15, Tensor product of Hilbert spaces, Adjacency tensor; centrality measures; Einstein product; Krylov subspace method; multilayer networks; tensor functions, Mathematics, Art
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
