Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/wcnc61...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Private Variable-Length Coding with Sequential Encoder

Authors: Zamani, Amirreza; Oechtering, Tobias J.; Gündüz, Deniz; Skoglund, Mikael;

Private Variable-Length Coding with Sequential Encoder

Abstract

A multi-user private data compression problem is studied. A server has access to a database of $N$ files, $(Y_1,...,Y_N)$, each of size $F$ bits and is connected to an encoder. The encoder is connected through an unsecured link to a user. We assume that each file $Y_i$ is arbitrarily correlated with a private attribute $X$, which is assumed to be accessible by the encoder. Moreover, an adversary is assumed to have access to the link. The users and the encoder have access to a shared secret key $W$. We assume that at each time the user asks for a file $Y_{d_i}$, where $(d_1,\ldots,d_K)$ corresponds to the demand vector. The goal is to design the delivered message $\mathcal {C}=(\mathcal {C}_1,\ldots,\mathcal {C}_K)$ after the user send his demands to the encoder such that the average length of $\mathcal{C}$ is minimized, while satisfying: i. The message $\cal C$ does not reveal any information about $X$, i.e., $X$ and $\mathcal{C}$ are independent, which corresponds to the perfect privacy constraint; ii. The user is able to decode its demands, $Y_{d_i}$, by using $\cal C$, and the shared key $W$. Here, the encoder sequentially encode each demand $Y_{d_i}$ at time $i$, using the shared key and previous encoded messages. We propose a variable-length coding scheme that uses privacy-aware compression techniques. We study proposed upper and lower bounds on the average length of $\mathcal{C}$ in an example. Finally, we study an application considering cache-aided networks.

arXiv admin note: substantial text overlap with arXiv:2306.13184

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities