Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic algorithm selection for the logic of tasks in IoT stream processing systems

Authors: Ehsan Poormohammady; Jens Helge Reelfs; Mirko Stoffers; Klaus Wehrle; Apostolos Papageorgiou;

Dynamic algorithm selection for the logic of tasks in IoT stream processing systems

Abstract

Various Internet of Things (IoT) and Industry 4.0 use cases, such as city-wide monitoring or machine control, require low-latency distributed processing of continuous data streams. This fact has boosted research on making Stream Processing Frameworks (SPFs) IoT-ready, meaning that their cloud and IoT service management mechanisms (e.g., task placement, load balancing, algorithm selection) need to consider new requirements, e.g., ultra low latency due to physical interactions. The algorithm selection problem refers to selecting dynamically which internal logic a deployed streaming task should use in case of various alternatives, but it is not sufficiently supported in current SPFs. To the best of our knowledge, this work is the first to add this capability to SPFs. Our solution is based on i) architectural extensions of typical SPF middleware, ii) a new schema for characterizing algorithmic performance in the targeted context, and iii) a streaming-specific optimization problem formulation. We implemented our solution as an extension to Apache Storm and demonstrate how it can reduce stream processing latency by up to a factor of 2.9 in the tested scenarios.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!