
This paper tries to put various ways in which Natural Language Processing (NLP) and Software Engineering (SE) can be seen as inter-disciplinary research areas. We survey the current literature, with the aim of assessing use of Software Engineering and Natural Language Processing tools in the researches undertaken. An assessment of how various phases of SDLC can employ NLP techniques is presented. The paper also provides the justification of the use of text for automating or combining both these areas. A short research direction while undertaking multidisciplinary research is also provided.
Software/trends, Software Validation, software code, Software development, software testing, integration, Software Design, Software/standards, Software/history, Software, Software/classification, software maintainence
Software/trends, Software Validation, software code, Software development, software testing, integration, Software Design, Software/standards, Software/history, Software, Software/classification, software maintainence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
