
handle: 20.500.14243/49258 , 11392/470233 , 11585/48408
Abstract--In this paper, the estimation of a scalar field over a bidimensional scenario (e.g., the atmospheric pressure in a wide area) through a self-organizing wireless sensor network (WSN) with energy constraints is investigated. The sensor devices (denoted as nodes) are randomly distributed; they transmit samples to a supervisor by using a clustered network. This paper provides a mathematical framework to analyze the interdependent aspects of WSN communication protocol and signal processing design. Channel modelling and connectivity issues, multiple access control and routing, and the role of distributed digital signal processing (DDSP) techniques are accounted for. The possibility that nodes perform DDSP is studied through a distributed compression technique based on signal resampling. The DDSP impact on network energy efficiency is compared through a novel mathematical approach to the case where the processing is performed entirely by the supervisor. The trade-off between energy conservation (i.e., network lifetime) and estimation error is discussed and a design criterion is proposed as well. Comparison to simulation outcomes validates the model. As an example result, the required node density is found as a trade-off between estimation quality and network lifetime for different system parameters and scalar field characteristics. It is shown that both the DDSP technique and the MAC protocol choice have a relevant impact on the performance of a WSN.
algorithm/protocol design and analysis, Wireless sensor networks; algorithm/protocol design and analysis; energy efficiency; environmental monitoring; modeling techniques, energy efficiency., wireless sensor networks; distributed estimation; Poisson point process; random sampling, Wireless sensor networks, modeling techniques, environmental monitoring
algorithm/protocol design and analysis, Wireless sensor networks; algorithm/protocol design and analysis; energy efficiency; environmental monitoring; modeling techniques, energy efficiency., wireless sensor networks; distributed estimation; Poisson point process; random sampling, Wireless sensor networks, modeling techniques, environmental monitoring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 113 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
