Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Knowledge and Inform...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Knowledge and Information Systems
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks

Authors: Parisutham Nirmala; Ramasubramony Sulochana Lekshmi; Rethnasamy Nadarajan;

Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks

Abstract

Maximum common induced subgraph (MCIS) of a communication network graph database determine the common substructures which are always active and retain the links between any pair of nodes exactly as in all graphs of the database. Many benchmark graph algorithms to predict MCIS of a graph database deal only with two graphs at a time and seek isomorphism, for which a high computational cost is to be paid. This gradually reduces the performance of the existing algorithms when the database has huge graph data. The proposed binary caterpillar MCIS algorithm to predict all MCIS of the database works for communication network graph database each of whose vertices has a unique label (IP address). In this, a new data structure which is a caterpillar-based binary tree is defined to reduce the search space of the problem using the concept of vertex cover and it takes into account all graphs of the database simultaneously to predict all MCIS of the database. This has substantially reduced unwanted comparisons among the datasets, when compared to the existing algorithms, as well as the difficulty of seeking isomorphism is avoided due to unique vertex labels. The experimental results further ensure the efficiency of the proposed algorithm with respect to existing works.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!