Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SAIEE Africa Researc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SAIEE Africa Research Journal
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Designing an Autonomous Vehicle Using Sensor Fusion Based on Path Planning and Deep Learning Algorithms

Authors: Suprapto, Bhakti Y.; Dwijayanti, Suci; Hafiz, Dimsyiar M.A.; Ardandy, Farhan A.; Jonathan, Javen;

Designing an Autonomous Vehicle Using Sensor Fusion Based on Path Planning and Deep Learning Algorithms

Abstract

Autonomous electric vehicles use camera sensors for vision-based steering control and detecting both roads and objects. In this study, road and object detection are combined, utilizing the YOLOv8x-seg model trained for 200 epochs, achieving the lowest segmentation loss at 0.53182. Simulation tests demonstrate accurate road and object detection, effective object distance measurement, and real-time road identification for steering control, successfully keeping the vehicle on track with an average object distance measurement error of 2.245 m. Route planning for autonomous vehicles is crucial, and the A-Star algorithm is employed to find the optimal route. In real-time tests, when an obstacle is placed between nodes 6 and 7, the A-Star algorithm can reroute from the original path (5, 6, 7, 27, and 28) to a new path (5, 6, 9, 27, and 28). This study demonstrates the vital role of sensor fusion in autonomous vehicles by integrating various sensors. This study focuses on sensor fusion for object-road detection and path planning using the A* algorithm. Real-time tests in two different scenarios demonstrate the successful integration of sensor fusion, enabling the vehicle to follow planned routes. However, some route nodes remain unreachable, requiring occasional driver intervention. These results demonstrate the feasibility of sensor fusion with diverse tasks in third-level autonomous vehicles.

Related Organizations
Keywords

sensor fusion, A-star algorithm, YOLOv8, object detection, path planning, road detection

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold