
Safety risk evaluations of deep foundation construction schemes are important to ensure safety. However, the amount of knowledge on these evaluations is large, and the historical data of deep foundation engineering is imbalanced. Some adverse factors influence the quality and efficiency of evaluations using traditional manual evaluation tools. Machine learning guarantees the quality of imbalanced data classifications. In this study, three strategies are proposed to improve the classification accuracy of imbalanced data sets. First, data set information redundancy is reduced using a binary particle swarm optimization algorithm. Then, a classification algorithm is modified using an Adaboost-enhanced support vector machine classifier. Finally, a new classification evaluation standard, namely, the area under the ROC curve, is adopted to ensure the classifier to be impartial to the minority. A transverse comparison experiment using multiple classification algorithms shows that the proposed integrated classification algorithm can overcome difficulties associated with correctly classifying minority samples in imbalanced data sets. The algorithm can also improve construction safety management evaluations, relieve the pressure from the lack of experienced experts accompanying rapid infrastructure construction, and facilitate knowledge reuse in the field of architecture, engineering, and construction.
deep foundation, Building construction, machine learning, safety risk evaluation, ensemble learning algorithm, imbalanced data set, TH1-9745, construction scheme
deep foundation, Building construction, machine learning, safety risk evaluation, ensemble learning algorithm, imbalanced data set, TH1-9745, construction scheme
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
