Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Conference object . 2025
https://doi.org/10.1145/371225...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geometric Learning in Black-Box Optimization: A GNN Framework for Algorithm Performance Prediction

Authors: Ana Kostovska; Carola Doerr; Sašo Džeroski; Panče Panov; Tome Eftimov;

Geometric Learning in Black-Box Optimization: A GNN Framework for Algorithm Performance Prediction

Abstract

Automated algorithm performance prediction in numerical blackbox optimization often relies on problem characterizations, such as exploratory landscape analysis features. These features are typically used as inputs to machine learning models and are represented in a tabular format. However, such approaches often overlook algorithm configurations, a key factor influencing performance. The relationships between algorithm operators, parameters, problem characteristics, and performance outcomes form a complex structure best represented as a graph. This work explores the use of heterogeneous graph data structures and graph neural networks to predict the performance of optimization algorithms by capturing the complex dependencies between problems, algorithm configurations, and performance outcomes. We focus on two modular frameworks, modCMA-ES and modDE, which decompose two widely used derivative-free optimization algorithms: the covariance matrix adaptation evolution strategy (CMA-ES) and differential evolution (DE). We evaluate 324 modCMA-ES and 576 modDE variants on 24 BBOB problems across six runtime budgets and two problem dimensions. Achieving up to 36.6% improvement in MSE over traditional tabular-based methods, this work highlights the potential of geometric learning in black-box optimization.

Keywords

Machine Learning, FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, algorithm performance prediction, graph neural networks, numerical black-box optimization, [INFO] Computer Science [cs], Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities