Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of the Computer Society
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Lightweight Visual Font Style Recognition With Quantized Convolutional Autoencoder

Authors: Moshiur Rahman Tonmoy; Abdul Fattah Rakib; Rashik Rahman; Md. Akhtaruzzaman Adnan; M. F. Mridha; Jie Huang; Jungpil Shin;

A Lightweight Visual Font Style Recognition With Quantized Convolutional Autoencoder

Abstract

Font style recognition plays a vital role in the field of computer vision, particularly in document and pattern analysis, and image processing. In the industry context, this recognition of font styles holds immense importance for professionals such as graphic designers, front-end developers, and UI-UX developers. In recent times, font style recognition using Computer Vision has made significant progress, especially in English. Very few works have been done for other languages as well. However, the existing models are computationally costly, time-consuming, and not diversified. In this work, we propose a state-of-the-art model to recognize Bangla fonts from images using a quantized Convolutional Autoencoder (Q-CAE) approach. The compressed model takes around 58 KB of memory only which makes it suitable for not only high-end but also low-end computational edge devices. We have also created a synthetic data set consisting of 10 distinct Bangla font styles and a total of 60,000 images for conducting this study as no dedicated dataset is available publicly. Experimental outcomes demonstrate that the proposed method can perform better than existing methods, gaining an overall accuracy of 99.95% without quantization and 99.85% after quantization.

Keywords

TinyML, edge devices, QA75.5-76.95, Information technology, T58.5-58.64, computer vision, convolutional autoencoder, Visual font recognition, Electronic computers. Computer science, quantization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold