Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UCL Discoveryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2023
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computerized Medical Imaging and Graphics
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic 3D joint erosion detection for the diagnosis and monitoring of rheumatoid arthritis using hand HR-pQCT images

Authors: Xuechen Zhang; Isaac Cheng; Shaojun Liu; Chenrui Li; Jing-Hao Xue; Lai-Shan Tam; Weichuan Yu;

Automatic 3D joint erosion detection for the diagnosis and monitoring of rheumatoid arthritis using hand HR-pQCT images

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease. It leads to bone erosion in joints and other complications, which severely affect patients' quality of life. To accurately diagnose and monitor the progression of RA, quantitative imaging and analysis tools are desirable. High-resolution peripheral quantitative computed tomography (HR-pQCT) is such a promising tool for monitoring disease progression in RA. However, automatic erosion detection tools using HR-pQCT images are not yet available. Inspired by the consensus among radiologists on the erosions in HR-pQCT images, in this paper we define erosion as the significant concave regions on the cortical layer, and develop a model-based 3D automatic erosion detection method. It mainly consists of two steps: constructing closed cortical surface, and detecting erosion regions on the surface. In the first step, we propose an initialization-robust region competition methods for joint segmentation, and then fill the surface gaps by using joint bone separation and curvature-based surface alignment. In the second step, we analyze the curvature information of each voxel, and then aggregate the candidate voxels into concave surface regions and use the shape information of the regions to detect the erosions. We perform qualitative assessments of the new method using 59 well-annotated joint volumes. Our method has shown satisfactory and consistent performance compared with the annotations provided by medical experts.

Keywords

Erosion detection, Surface curvature feature, Variational image processing, Computer aided detection, Hand, Arthritis, Rheumatoid, Quality of Life, Humans, Rheumatoid arthritis, Tomography, X-Ray Computed

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green