Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/d72b4...
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correction of metal artefacts around orthodontic mini-implants – a micro-CT study in the rat tail model

a micro-CT study in the rat tail model
Authors: Kerberger, Robert; Brunello, Giulia; Rauch, Nicole; Drescher, Dieter; van Rietbergen, Bert; Becker, Kathrin;

Correction of metal artefacts around orthodontic mini-implants – a micro-CT study in the rat tail model

Abstract

Abstract Micro-CT enables volumetric analysis of peri-implant tissue, but grey value alterations due to metal artefacts can impair analyses. This study aimed to assess to which extent peri-implant grey values are affected by metal artefacts at increasing distance to the implant, and whether mathematical correction is possible. In nine rats, two Ti6Al4V orthodontic mini-implants (OMIs), 0.8 mm in diameter and 3.0 mm in length, were placed in a single tail vertebra. Micro-CT scans were performed before (T0) and after (T1) careful removal of the OMIs. Consecutive micro-CT scans were registered and differences in local grey values were computed at increasing distance to the implant (10.4 μm to 405.6 μm). Correction coefficient (CC) computation was performed using a smoothing spline fit, with the distance to the implant and the grey value difference as independent and dependent variable, respectively. To validate the effectiveness of the CC, the amount of calcified bone volume per total volume (BV/TV) was assessed within a standardized volume of interest (VOI) reaching up to 1 mm around the OMIs before and after the application of CC, and the T1-T0 differences between corrected and uncorrected scans were compared using the Wilcoxon signed-rank test. The grey value difference between uncorrected T0 and T1 scans was low in proximity to the implant (32.7%±6.11%) and improved at a distance of at least 100 μm (93.4%±4.46%). CC computation revealed a satisfactory fit (R2 = 0.989, RMSE = 0.031) and the difference in grey values was significantly lower after correction (p < 0.001). Most VOIs showed significant improvement, though overcorrection was observed in a few cases. Within the limitations of the study, metal artefacts decreased with increasing distance to the OMIs, and significant improvement was possible using the CC.

Keywords

Micro-CT, Titanium, Tail, Dental Implants, Male, Tail/diagnostic imaging, X-Ray Microtomography/methods, Rat tail model, Science, Q, R, Peri-implant artefacts, X-Ray Microtomography, Article, Titanium/chemistry, Rats, Metals/chemistry, Peri-implant bone, Metals, Bone morphometry, Alloys, Medicine, Animals, Artifacts, Metal artefact correction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities