
handle: 10125/80106
The vision of Industrie 4.0 includes the automated reduction of anomalies in flexibly combined production machine groups up to a zero-failure ideal. Algorithmic real-time detection of production anomalies may build the basis for machine self-diagnosis and self-repair during production. Several real-time anomaly detection algorithms appeared in recent years. However, different algorithms applied to the same data may result in contradictory detections. Thus, real-time anomaly detection in Industrie 4.0 machine groups may require a benchmark ranking for algorithms to increase detection results’ reliability. This paper makes a qualitative research contribution based on ten expert interviews to find design principles for such a benchmark ranking. The experts were interviewed on three categories, namely timeliness, thresholds and qualitative classification. The study’s results can be used as groundwork for a prototypical implementation of a benchmark.
Business Strategies, benchmark, Data Analytics, real-time anomaly detection algorithms, Control Systems, industrie 4.0, streaming data
Business Strategies, benchmark, Data Analytics, real-time anomaly detection algorithms, Control Systems, industrie 4.0, streaming data
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
