Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

mSNP: A Massively Parallel Algorithm for Large-Scale SNP Detection

Authors: Yingbo Cui; Shaoliang Peng; Yutong Lu; Xiaoqian Zhu; Bingqiang Wang; Chengkun Wu; Xiangke Liao;

mSNP: A Massively Parallel Algorithm for Large-Scale SNP Detection

Abstract

Single Nucleotide Polymorphism (SNP) detection is a fundamental procedure of whole genome analysis. SOAPsnp, a classic tool for detection, would take more than one week to analyze one typical human genome, which limits the efficiency of downstream analyses. In this paper, we present mSNP, an optimized version of SOAPsnp, which leverages Intel Xeon Phi coprocessors for large-scale SNP detection. Firstly, we redesigned the essential data structures of SOAPsnp, which significantly reduces memory footprint and improves computing efficiency. Then we developed a coordinated parallel framework for a higher hardware utilization of both CPU and Xeon Phi. Also, we tailored the data structures and operations to utilize the wide VPU of Xeon Phi to improve data throughput. Last but not the least, we proposeed a read-based window division strategy to improve throughput and obtain better load balance. mSNP is the first SNP detection tool empowered by Xeon Phi. We achieved a 38x single thread speedup on CPU, without any loss in precision. Moreover, mSNP successfully scaled to 4,096 nodes on Tianhe-2. Our experiments demonstrate that mSNP is efficient and scalable for large-scale human genome SNP detection.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!