Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Shock and Vibrationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock and Vibration
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock and Vibration
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock and Vibration
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/ha...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/6q...
Other literature type . 2020
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fault Detection and Behavior Analysis of Wheelset Bearing Using Adaptive Convolutional Sparse Coding Technique Combined with Bandwidth Optimization

اكتشاف الأعطال وتحليل السلوك لمحمل مجموعة العجلات باستخدام تقنية الترميز المتناثر التوافقي التكيفي جنبًا إلى جنب مع تحسين عرض النطاق الترددي
Authors: Liu He; Yi Cai; Jianhui Lin; Andy Tan;

Fault Detection and Behavior Analysis of Wheelset Bearing Using Adaptive Convolutional Sparse Coding Technique Combined with Bandwidth Optimization

Abstract

Wheelset bearing is a critical and easily damaged component of a high-speed train. Wheelset bearing fault diagnosis is of great significance to ensure safe operation of high-speed trains and realize intelligent operation and maintenance. The convolutional sparse coding technique based on the dictionary learning algorithm (CSCT-DLA) provides an effective algorithm framework for extracting the impulses caused by bearing defect. However, dictionary learning is easily affected by foundation vibration and harmonic interference and cannot learn the key structure related to fault impulses. At the same time, the detection performance of fault impulse heavily depends on the selection of parameters in this approach. Union of convolutional dictionary learning algorithm (UC-DLA) is an efficient algorithm in CSCT-DLA. In this paper, UC-DLA is introduced and improved for wheelset bearing fault detection. Finally, a novel bearing fault detection method, adaptive UC-DLA combined with bandwidth optimization (AUC-DLA-BO), is proposed. The mathematical formulation of AUC-DLA-BO is a sort of constrained optimization problem, which can overcome foundation vibration and harmonic interference and adaptively determine parameters related to UC-DLA. The proposed method can detect the fault resonance band adaptively, eliminate the noise with the same frequency band as the fault resonance band, and highlight the bearing fault impulses. Simulated signals and bench tests are used to verify the effectiveness of the proposed method. The results show that AUC-DLA-BO can effectively detect bearing faults and realize the refined analysis of fault behavior.

Related Organizations
Keywords

Artificial intelligence, Machine Fault Diagnosis and Prognostics, Electronic engineering, QC1-999, Mechanical Engineering, Physics, Bearing (navigation), FOS: Mechanical engineering, Acoustics, Fault Diagnosis, Bearing Faults, Computer science, Vibration, Dynamics and Faults in Gear Systems, Algorithm, Engineering, Control and Systems Engineering, Actuator, Physical Sciences, Fault detection and isolation, Advanced Monitoring of Machining Operations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold