Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Permanent Hosting, A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering Applications of Artificial Intelligence
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
Engineering Applications of Artificial Intelligence
Article . 2025
License: CC BY
Data sources: u:cris
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation-based genetic algorithm for optimizing a municipal cooperative waste supply chain in a pandemic

Authors: Ghasemi, Peiman; Goli, Alireza; Goodarzian, Fariba; Ehmke, Jan Fabian;

Simulation-based genetic algorithm for optimizing a municipal cooperative waste supply chain in a pandemic

Abstract

The quantity of medical waste produced by municipalities is on the rise, potentially presenting significant hazards to both the environment and human health. Developing a robust supply chain network for managing municipal medical waste is important for society, especially during a pandemic like COVID-19. In supply chain network design, factors such as the collection of non-infectious waste, transporting infectious waste from hospitals to disposal facilities, revenue generation from waste-to-energy initiatives, and the potential for pandemic outbreaks are often overlooked. Hence, in this study, we design a model incorporating COVID-19 parameters to mitigate the spread of the virus while designing an effective municipal medical waste supply chain network during a pandemic. The proposed model is multi-objective, multi-echelon, multi-commodity and involves coalition-based cooperation. The first objective function aims to minimize total costs, while the second objective pertains to minimizing the risk of a COVID-19 outbreak. We identify optimal collaboration among municipal medical waste collection centers to maximize cost savings. The COVID-19 prevalence risk level by the waste in each zone is calculated pursuant to their inhabitants. Additionally, we analyze a system dynamic simulation framework to forecast waste generation levels amid COVID-19 conditions. A metaheuristic based on the Non-dominated Sorting Genetic Algorithm II is used to solve the problem and is benchmarked against exact solutions. To illustrate our approach, we present a case study focused on Tehran, Iran. The results show that an increase in the amount of generated waste leads to an increase in the total costs of the supply chain.

Related Organizations
Keywords

Simulation-based genetic algorithm, SDG 12 – Nachhaltige/r Konsum und Produktion, 502017 Logistik, SDG 3 - Good Health and Well-being, SDG 11 – Nachhaltige Städte und Gemeinden, Simulation-optimization model, SDG 3 – Gesundheit und Wohlergehen, 502017 Logistics, Supply chain network, SDG 12 - Responsible Consumption and Production, Urban waste management, Cooperative game, SDG 11 - Sustainable Cities and Communities

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities