
In the present work, a weighted maximum likelihood method (WMLM) is proposed to obtain robust estimates of experimental data containing outliers. The method allows asymptotically effective robust unbiased estimates to be obtained in the presence of not only external, but also internal asymmetric and symmetric outliers. Algorithms for obtaining robust WMLM estimates are considered at the parametric level of aprioristic uncertainty. It is demonstrated that these estimates converge to the maximum likelihood estimates of a heterogeneous data sample for each distribution within the Tukey supermodel.
параметрические оценки, разнородные экспериментальные данные, статистическая обработка данных, физические эксперименты, робастные оценки
параметрические оценки, разнородные экспериментальные данные, статистическая обработка данных, физические эксперименты, робастные оценки
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
