Downloads provided by UsageCounts
handle: 10261/39276 , 2117/12343
In this paper we propose an efficient preconditioned conjugate gradients (PCG) approach to solving large-scale SLAM problems. While direct methods, popular in the literature, exhibit quadratic convergence and can be quite efficient for sparse problems, they typically require a lot of storage and efficient elimination orderings to be found. In contrast, iterative optimization methods only require access to the gradient and have a small memory footprint, but can suffer from poor convergence. Our new method, subgraph preconditioning, is obtained by re-interpreting the method of conjugate gradients in terms of the graphical model representation of the SLAM problem. The main idea is to combine the advantages of direct and iterative methods, by identifying a sub-problem that can be easily solved using direct methods, and solving for the remaining part using PCG. The easy sub-problems correspond to a spanning tree, a planar subgraph, or any other substructure that can be efficiently solved. As such, our approach provides new insights into the performance of state of the art iterative SLAM methods based on re-parameterized stochastic gradient descent. The efficiency of our new algorithm is illustrated on large datasets, both simulated and real.
Gratefully acknowledge the support from the National Science Foundation, Awards 0713162 and 0448111 (CAREER). Viorela Ila has been partially supported by the Spanish Ministry of Science and Innovation under the Programa Nacional de Movilidad de Recursos Humanos de Investigación.
6 páginas, 7 figuras.-- Trabajo presentado a la IROS 2010 celebrada en Taipei (Taiwan) del 18 al 22 de Octubre.
Peer reviewed
spanning tree, :Optimisation [Classificació INSPEC], Optimització matemàtica, Mathematical optimization, Classificació INSPEC::Optimisation, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització, preconditioned conjugate gradients, robots PARAULES AUTOR: SLAM, quadratic convergence, iterative optimization methods, stochastic gradient descent, SLAM [robots PARAULES AUTOR], graphical model representation, subgraph, :Matemàtiques i estadística::Investigació operativa::Optimització [Àrees temàtiques de la UPC]
spanning tree, :Optimisation [Classificació INSPEC], Optimització matemàtica, Mathematical optimization, Classificació INSPEC::Optimisation, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització, preconditioned conjugate gradients, robots PARAULES AUTOR: SLAM, quadratic convergence, iterative optimization methods, stochastic gradient descent, SLAM [robots PARAULES AUTOR], graphical model representation, subgraph, :Matemàtiques i estadística::Investigació operativa::Optimització [Àrees temàtiques de la UPC]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 89 | |
| downloads | 222 |

Views provided by UsageCounts
Downloads provided by UsageCounts