
handle: 2434/469592
The Unit Commitment Problem (UCP) aims at finding the optimal commitment for a set of thermal power plants in a Power System (PS) according to some criterion. Our work stems from a collaboration with RSE S.p.A., a major industrial research centre for PSs in Italy. In this context the UCP is formulated as a large-scale MILP spanning countries over a year with hourly resolution to simulate the ideal behaviour of the system in different scenarios. Our goal is to refine existing heuristic solutions to increase simulation reliability. In our previous studies we devised a Column Generation algorithm (CG) which, however, shows numerical instability due to degeneracy in the master problem. Here we evaluate the application of Benders Decomposition (BD), which yields better conditioned subproblems. We also employ Magnanti-Wong cuts and a “two-phases scheme”, which first quickly computes valid cuts by applying BD to the continuous relaxation of the problem and then restores integrality. Experimental results on weekly instances for the Italian system show the objective function to be flat. Even if such a feature worsens convergence, the algorithm is able to reach almost optimal solutions in few iterations.
unit commitment, power systems, mixed integer linear programming, Benders decomposition, large scale optimization
unit commitment, power systems, mixed integer linear programming, Benders decomposition, large scale optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
