
The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth order kernel which is a merger of two successive fourth order kernels and the statistical properties of these hybrid kernels were study. The results of our simulation reveals that the proposed higher order hybrid kernels outperformed their corresponding parent’s kernel functions using the asymptotic mean integrated squared error.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
