Downloads provided by UsageCounts
handle: 10400.1/17074
The gearbox will directly affect the safety and reliability of the wind turbine, whose failure leads to low processing accuracy and certain economic losses. To address this issue, a deep enhanced fusion network (DEFN) is proposed for the fault diagnosis of the wind turbine gearbox with the experimental vibration data. In the proposed DEFN, three sparse autoencoders are first applied to extract deep features of three-axial vibration signals, respectively. Second, a feature enhancement mapping is developed to minimize the intraclass distance of the deep features in the three-axial vibration. Finally, the fused three-axis features are put into an echo state network for fault classification. The results of the experiment carried out in a wind turbine show that the proposed DEFN has a good fault diagnosis accuracy compared with other peer models.
Wind turbine gearbox, Sparse autoencoder (SAE), Echo state network (ESN), Feature enhancement, Fault diagnosis
Wind turbine gearbox, Sparse autoencoder (SAE), Echo state network (ESN), Feature enhancement, Fault diagnosis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 15 | |
| downloads | 12 |

Views provided by UsageCounts
Downloads provided by UsageCounts