Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Omegaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Omega
Article . 2026 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Evry
Article . 2026
Data sources: HAL Evry
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributionally robust master surgery scheduling with duration uncertainty and specialty parallelism

Authors: Li, Jinfeng; Zhao, Songzheng; Makboul, Salma; Zhang, Zhongping; Wang, Yang; Huang, Mingjun;

Distributionally robust master surgery scheduling with duration uncertainty and specialty parallelism

Abstract

This study investigates master surgery scheduling at the tactical decision-making level of operating room (OR) management, addressing uncertainty in surgeons’ surgery durations and parallelism in surgical specialties. The goal is to optimize OR time block types within the scheduling cycle, allocate them efficiently to surgical specialties and surgeons, and determine the appropriate number of surgeries to schedule. Given the limited historical data on surgery durations, we employ a distributionally robust optimization (DRO) approach to address the uncertainty in the distribution. To address the needs of different OR managers, we develop a distributionally robust chance-constrained model to manage overtime that extends beyond the designated OR time blocks. Meanwhile, we construct a distributionally robust bi-objective optimization model with the goals of minimizing the expected total duration of overtime and maximizing the number of surgeries scheduled. These optimization models are reformulated into computationally tractable forms using dual theory. We validate the proposed methods with real hospital data, finding that the DRO approach offers greater stability in scheduling solutions compared to the sample average approximation approach.

Keywords

Multi-objective optimization, Master surgery scheduling, Distributionally robust optimization, Chance-constrained programming, Overtime, Uncertain surgery duration, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!