
doi: 10.1520/acem20200067
handle: 20.500.12876/7vdXlqxv
ABSTRACT The transport of liquids, gasses, and aggressive agents into concrete is responsible for a variety of durability issues. To obtain the low-permeability concrete required for long-lasting, sustainable infrastructure, stakeholders desire the ability to specify concrete based upon the permeability rating for specific uses. The mechanisms of moisture ingress into concrete are complex phenomena, and they are highly dependent on materials, mixture characteristics, curing conditions, and other factors. This review article provides an overview of the available permeability test methods and identifies existing gaps in the current field and knowledge. It discusses the mechanisms and key factors influencing moisture movement within concrete (capillary suction, absorption, water, and gas permeability) and outlines the procedures, advantages, and limitations of available permeability test methods. Despite a variety of tests available for water permeability, widespread acceptance for use of a single (or even a few) tests has not been achieved. No clear link exists between these tests and acceptable field performance. Additionally, several tests are viewed as problematic from a time, cost, or variability standpoint. Therefore, improved rapid permeability tests are needed to provide a pathway for agencies to move toward performance specifications with confidence. Recommendations regarding future work to support the development of improved test methods and, potentially, a model that would predict moisture ingress based on electrical resistivity, are also presented.
concrete durability, transport properties, DegreeDisciplines::Engineering::Engineering Science and Materials, DegreeDisciplines::Engineering::Civil and Environmental Engineering::Civil Engineering, chloride ion ingress, permeability, 624, 620
concrete durability, transport properties, DegreeDisciplines::Engineering::Engineering Science and Materials, DegreeDisciplines::Engineering::Civil and Environmental Engineering::Civil Engineering, chloride ion ingress, permeability, 624, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
