Views provided by UsageCounts
We give a purely combinatorial characterization of complete Stanley-Reisner rings having principally generated (equivalently, finitely generated) Cartier algebras.
The main result restated in a cleaner way. 5 pages, 2 figures. To appear in J. Algebra
Stanley–Reisner rings, Àrees temàtiques de la UPC::Matemàtiques i estadística, FOS: Mathematics, Cartier algebras, :Matemàtiques i estadística [Àrees temàtiques de la UPC], :13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS], Àlgebra, Classificació AMS::13 Commutative rings and algebras::13A General commutative ring theory, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
Stanley–Reisner rings, Àrees temàtiques de la UPC::Matemàtiques i estadística, FOS: Mathematics, Cartier algebras, :Matemàtiques i estadística [Àrees temàtiques de la UPC], :13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS], Àlgebra, Classificació AMS::13 Commutative rings and algebras::13A General commutative ring theory, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 49 |

Views provided by UsageCounts