Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Conference object . 2024
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Conference object . 2024
Data sources: HAL AMU
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local certification of geometric graph classes

Authors: Defrain, Oscar; Esperet, Louis; Lagoutte, Aurélie; Morin, Pat; Raymond, Jean-Florent;

Local certification of geometric graph classes

Abstract

The goal of local certification is to locally convince the vertices of a graph $G$ that $G$ satisfies a given property. A prover assigns short certificates to the vertices of the graph, then the vertices are allowed to check their certificates and the certificates of their neighbors, and based only on this local view, they must decide whether $G$ satisfies the given property. If the graph indeed satisfies the property, all vertices must accept the instance, and otherwise at least one vertex must reject the instance (for any possible assignment of certificates). The goal is to minimize the size of the certificates. In this paper we study the local certification of geometric and topological graph classes. While it is known that in $n$-vertex graphs, planarity can be certified locally with certificates of size $O(\log n)$, we show that several closely related graph classes require certificates of size $Ω(n)$. This includes penny graphs, unit-distance graphs, (induced) subgraphs of the square grid, 1-planar graphs, and unit-square graphs. These bounds are tight up to a constant factor and give the first known examples of hereditary (and even monotone) graph classes for which the certificates must have linear size. For unit-disk graphs we obtain a lower bound of $Ω(n^{1-δ})$ for any $δ>0$ on the size of the certificates, and an upper bound of $O(n \log n)$. The lower bounds are obtained by proving rigidity properties of the considered graphs, which might be of independent interest.

36 pages, 16 figures; v4: version revised according to the reviewers comments

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, [INFO.INFO-DC]Computer Science [cs]/Distributed, Mathematics of computing → Graph theory, Discrete Mathematics (cs.DM), Computing methodologies → Distributed computing methodologies, proof labeling schemes, Theory of computation → Computational geometry, [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], Parallel, 004, and Cluster Computing [cs.DC], Computer Science - Distributed, Parallel, and Cluster Computing, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], geometric intersection graphs, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Local certification, FOS: Mathematics, Computer Science - Computational Geometry, Mathematics - Combinatorics, Distributed, Parallel, and Cluster Computing (cs.DC), Combinatorics (math.CO), Computer Science - Discrete Mathematics, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green