
Introduction. The issues of features informativity evaluation in biomedical signals portraits according to formal comparison of their probability values, obtained during training of supervised learning recognition systems are being considered. The purpose of this work is to increase the effectiveness of the biomedical signals recognition in diagnostic systems with supervised learning, by choosing rational structure of portraits based on the nature of their elements influence on the quality of pattern recognition.Details. Informativity values are used for feature selection in the formation of truncated portraits. Subsequent exclusion of less informative features from consideration relies in this paper in the basis of disclosure and implementation of reserves to increase the probability of correct recognition in diagnostic systems. Content and efficiency of the proposed signal processing technology is illustrated by the test case in the application to the common task of recognition of QRS-complexes types, useful for recognition system training with its data selection.Conclusions. The use of certain components of biomedical signals portraits, studied in the diagnosis of patients can have a positive impact on the quality of pattern recognition, while others create redundancy of portraits or reducing effectiveness of solving this task.
інформативність ознак, biomedical signals; recognition; features informativity; supervised learning, biomedical signals, медико-биологические сигналы; распознавание; информативность признаков; обучение с учителем, распознавание, обучение с учителем, 612.171.1 004.852, медико-биологические сигналы, TK5101-6720, supervised learning, BIOMEDICAL SIGNALS,RECOGNITION,FEATURES INFORMATIVITY,SUPERVISED LEARNING,МЕДИКО-БИОЛОГИЧЕСКИЕ СИГНАЛЫ,РАСПОЗНАВАНИЕ,ИНФОРМАТИВНОСТЬ ПРИЗНАКОВ,ОБУЧЕНИЕ С УЧИТЕЛЕМ,МЕДИКО-БіОЛОГіЧНі СИГНАЛИ,РОЗПіЗНАВАННЯ,іНФОРМАТИВНіСТЬ ОЗНАК,НАВЧАННЯ З УЧИТЕЛЕМ, информативность признаков, навчання з учителем, медико-біологічні сигнали, Telecommunication, recognition, розпізнавання, features informativity, медико-біологічні сигнали; розпізнавання; інформативність ознак; навчання з учителем
інформативність ознак, biomedical signals; recognition; features informativity; supervised learning, biomedical signals, медико-биологические сигналы; распознавание; информативность признаков; обучение с учителем, распознавание, обучение с учителем, 612.171.1 004.852, медико-биологические сигналы, TK5101-6720, supervised learning, BIOMEDICAL SIGNALS,RECOGNITION,FEATURES INFORMATIVITY,SUPERVISED LEARNING,МЕДИКО-БИОЛОГИЧЕСКИЕ СИГНАЛЫ,РАСПОЗНАВАНИЕ,ИНФОРМАТИВНОСТЬ ПРИЗНАКОВ,ОБУЧЕНИЕ С УЧИТЕЛЕМ,МЕДИКО-БіОЛОГіЧНі СИГНАЛИ,РОЗПіЗНАВАННЯ,іНФОРМАТИВНіСТЬ ОЗНАК,НАВЧАННЯ З УЧИТЕЛЕМ, информативность признаков, навчання з учителем, медико-біологічні сигнали, Telecommunication, recognition, розпізнавання, features informativity, медико-біологічні сигнали; розпізнавання; інформативність ознак; навчання з учителем
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
