Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Structuresarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Structures
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic FE modeler using stiffener-based mesh generation algorithm for ship structural analysis

Authors: Beom-Seon Jang; Yong-Suk Suh; Eun-Ki Kim; Tae-Hee Lee;

Automatic FE modeler using stiffener-based mesh generation algorithm for ship structural analysis

Abstract

Abstract Shipbuilding industries have started to employ 3D CAD systems to integrate all design and production processes by achieving seamless data transfer and data sharing. The emerging 3D CAD system brings a considerable change in FE analysis field. The availability of 3D geometry increased the recognition of the need for developing automatic FE modeling system consequently. However, general automatic mesh algorithms developed by academic research field have a limitation. The difficulty in satisfying lots of line constraints and the absence of proper idealization of 3D geometry entities defined in CAD system hinders directly employing the general mesh algorithms. In this research, an automatic FE modeling system has been developed for cargo hold FE modeling and whole ship FE modeling. The basic concept of the algorithm is to decompose surfaces using stiffener lines into subregions and generate mesh using a rule established based on FE modeling practice of ship structure. Since the decomposed subregions take simple polygon, they can be easily transformed into elements by decomposing the polygon according to the rule defined considering the shape of the polygon and mesh seed on its perimeter. The algorithm is also designed to treat appropriate geometry idealizations for bracket-type surface and stiffener connections. The idealization process is also completely customized based on FE modeling practice. The validity of the developed system is verified through illustrative examples.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!