
Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
