
High-resolution electron backscatter diffraction (EBSD) was used to study grain structure development during cryogenic rolling of Cu-29.5Zn brass. Microstructure evolution was found to be broadly similar to that occurring during rolling at room temperature. Specifically, favorably-oriented grains (Copper {1 1 2} 〈1 1 1〉 and S {1 2 3}〈6 3 4〉) experienced profuse deformation twinning followed by extensive shear banding. This eventually produced an ultrafine structure with a mean grain size of ∼0.2 μm. On the other hand, grains with crystallographic orientations close to Brass {1 1 0}〈1 1 2〉 and Goss {1 1 0}〈1 0 0〈 were found to be stable against twinning/shear banding and thus showed no significant grain refinement. As a result, the final structure developed in heavily-rolled material was distinctly inhomogeneous consisting of mm-scale remnants of original grains with poorly developed substructure and ultra-fine grain domains.
Manufactures, 600, зернистые структуры, дифракция, криогенная прокатка, TS, 620
Manufactures, 600, зернистые структуры, дифракция, криогенная прокатка, TS, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
