
In this paper, we propose an effective Convolutional Autoencoder (AE) model for Sparse Representation (SR) in the Wavelet Domain for Classification (SRWC). The proposed approach involves an autoencoder with a sparse latent layer for learning sparse codes of wavelet features. The estimated sparse codes are used for assigning classes to test samples using a residual-based probabilistic criterion. Intensive experiments carried out on various datasets revealed that the proposed method yields better classification accuracy while exhibiting a significant reduction in the number of network parameters, compared to several recent deep learning-based methods.
autoencoder, [SPI] Engineering Sciences [physics], wavelet domain, probability residual criterion, Sparse representation classification wavelet domain autoencoder probability residual criterion, Sparse representation classification
autoencoder, [SPI] Engineering Sciences [physics], wavelet domain, probability residual criterion, Sparse representation classification wavelet domain autoencoder probability residual criterion, Sparse representation classification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
